
Functional determinants for radial operators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11915

(http://iopscience.iop.org/0305-4470/39/38/017)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11915–11928 doi:10.1088/0305-4470/39/38/017

Functional determinants for radial operators

Gerald V Dunne1 and Klaus Kirsten2

1 Department of Physics, University of Connecticut, Storrs, CT 06269, USA
2 Department of Mathematics, Baylor University, Waco, TX 76798, USA

E-mail: dunne@phys.uconn.edu and klaus kirsten@baylor.edu

Received 12 July 2006
Published 5 September 2006
Online at stacks.iop.org/JPhysA/39/11915

Abstract
We derive simple new expressions, in various dimensions, for the functional
determinant of a radially separable partial differential operator, thereby
generalizing the one-dimensional result of Gel’fand and Yaglom to higher
dimensions. We use the zeta function formalism, and the results agree with
what one would obtain using the angular momentum cutoff method based
on radial WKB. The final expression is numerically equal to an alternative
expression derived in a Feynman diagrammatic approach, but is considerably
simpler.

PACS numbers: 02.30.Gp, 02.30.Tb, 03.70.+k, 05.45.Mt

1. Introduction and results

Determinants of differential operators occur naturally in many applications in mathematical
and theoretical physics, and also have inherent mathematical interest since they encode
certain spectral properties of differential operators. Physically, such determinants arise in
semiclassical and one-loop approximations in quantum mechanics and quantum field theory
[1–3]. Determinants of free Laplacians and free Dirac operators have been extensively studied
[4–10], but much less is known about operators involving an arbitrary potential function. For
ordinary (i.e., one dimensional) differential operators, a general theory has been developed for
determinants of such operators [10–15]. In this paper we extend these results to a broad class of
separable partial differential operators. The result for four dimensions was found previously in
[16] using radial WKB and an angular momentum cut-off regularization and renormalization
[17]. Here we re-derive this result using the zeta function approach to determinants [4, 5, 7, 10],
and generalize to other dimensions. We are motivated by applications in quantum field theory,
so we concentrate on the dimensions d = 2, 3, 4, but the mathematical extension to higher
dimensions is immediate. We also compare with another expression for the four-dimensional
determinant [18], derived using a Feynman diagrammatic approach.
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Consider the radially separable partial differential operators

M = −� + V (r) (1.1)
Mfree = −�, (1.2)

where � is the Laplace operator in R
d , and V (r) is a radial potential vanishing at infinity as

r−2−ε for d = 2 and d = 3, and as r−4−ε for d = 4. For d = 1, with Dirichlet boundary
conditions on the interval [0,∞), the results of Gel’fand and Yaglom [11] lead to the following
simple expression for the determinant ratio:

det[M + m2]

det[Mfree + m2]
= ψ(∞)

ψ free(∞)
, (1.3)

where [M + m2]ψ = 0, with initial value boundary conditions: ψ(0) = 0 and ψ ′(0) = 1.
The function ψ free is defined similarly in terms of the free operator: [Mfree +m2]. The squared
mass, m2, is important for physical applications, and plays the mathematical role of a spectral
parameter. The result (1.3) is geometrically interesting, in addition to being computationally
simple, as it means that the determinant is determined simply by the boundary values of the
solutions of [M + m2]ψ = 0, and no detailed information is needed concerning the actual
spectrum of eigenvalues.

Now consider dimensions greater than 1 (as mentioned, we are most interested in
d = 2, 3, 4; but the extension to higher dimensions is immediate). Since the potential is
radial, V = V (r), we can express the eigenfunctions of M as linear combinations of basis
functions of the form

�(r, �θ) = 1

r(d−1)/2
ψ(l)(r)Y(l)(�θ), (1.4)

where Y(l)(�θ) is a hyperspherical harmonic [19], labelled in part by a non-negative integer l,
and the radial function ψ(l)(r) is an eigenfunction of the Schrödinger-like radial operator

M(l) ≡ − d2

dr2
+

(
l + d−3

2

) (
l + d−1

2

)
r2

+ V (r). (1.5)

Mfree
(l) is defined similarly, with the potential omitted: V = 0. In dimension d � 2, the radial

eigenfunctions ψ(l) have degeneracy given by [19]

deg(l; d) ≡ (2l + d − 2)(l + d − 3)!

l!(d − 2)!
. (1.6)

Formally, for the separable operators in (1.1)–(1.2), the logarithm of the determinant ratio
can be written as a sum over l (weighted with the degeneracy factor) of the logarithm of
one-dimensional determinant ratios,

ln

(
det[M + m2]

det[Mfree + m2]

)
=

∞∑
l=0

deg(l; d) ln

(
det
[
M(l) + m2

]
det
[
Mfree

(l) + m2
]
)

. (1.7)

Each term in the sum can be computed using the Gel’fand–Yaglom result (1.3). However, the
l sum in (1.7) is divergent, as noted by Forman [13] for the free Laplace operator in a two-
dimensional disc. In this paper we show how to define a finite and renormalized determinant
ratio for the radially separable partial differential operators (1.1)–(1.2). Specifically, we derive
the following simple expressions, which generalize (1.3) to higher dimensions:

ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=2

= ln

(
ψ(0)(∞)

ψ free
(0) (∞)

)
+

∞∑
l=1

2

{
ln

(
ψ(l)(∞)

ψ free
(l) (∞)

)

−
∫∞

0 dr rV (r)

2l

}
+
∫ ∞

0
dr rV

[
ln
(µr

2

)
+ γ
]

(1.8)
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ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=3

=
∞∑
l=0

(2l + 1)

{
ln

(
ψ(l)(∞)

ψ free
(l) (∞)

)
−
∫∞

0 dr rV (r)

2
(
l + 1

2

)
}

(1.9)

ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=4

=
∞∑
l=0

(l + 1)2

{
ln

(
ψ(l)(∞)

ψ free
(l) (∞)

)
−
∫∞

0 dr rV (r)

2(l + 1)

+

∫∞
0 dr r3V (V + 2m2)

8(l + 1)3

}
− 1

8

∫ ∞

0
dr r3V (V + 2m2)

[
ln
(µr

2

)
+ γ + 1

]
.

(1.10)

Here γ is Euler’s constant, and µ is a renormalization scale (defined in the next section),
which is essential for physical applications, and which arises naturally in even dimensions. A
conventional renormalization choice is to take µ = m in (1.8)–(1.10). In each of (1.8)–(1.10),
the sum over l is convergent once the indicated subtractions are made. The function ψ(l)(r) is
the solution to the radial equation

[M(l) + m2]ψ(l)(r) = 0, ψ(l)(r) ∼ rl+(d−1)/2, as r → 0. (1.11)

The function ψ free
(l) (r) is defined similarly, with the same behaviour as r → 0, in terms of the

operator
[
Mfree

(l) + m2
]
. Thus, in d dimensions, ψ free

(l) (r) is expressed as a Bessel function:

ψ free
(l) (r) =

(
2

m

)l+d/2−1

�

(
l +

d

2

)
r1/2Il+d/2−1(mr). (1.12)

Note that the results (1.8)–(1.10) state once again that the determinant is determined by the
boundary values of solutions of [M+ m2]ψ = 0, with the only additional information being a
finite number of integrals involving the potential V (r). We also stress the computational
simplicity of (1.8)–(1.10), as the initial value problem (1.11) is trivial to implement
numerically. The d = 4 result (1.10) was found previously in [16] using radial WKB and an
angular momentum cutoff regularization and renormalization [17]. Here we present a different
proof using the zeta function approach, and generalize to other dimensions. In fact, the d = 2
and d = 3 results can also be derived using the radial WKB method of [16, 17]. Furthermore,
in section 3 we show how these results also agree with the Feynman diagrammatic approach,
by showing that the d = 4 zeta function expression (1.10) agrees precisely with a superficially
different, and more complicated, d = 4 expression found in [18]. Finally, we note that the
results in (1.8)–(1.10) are for a generic radial potential V (r). There are important physical
applications where the potential V (r) is such that the operator M has negative and/or zero
modes [16], in which case these expressions are modified slightly, as in [16] and as discussed
below in the conclusions.

2. Zeta function formalism

The functional determinant can be defined in terms of a zeta function [4, 5, 7] for the operator
M. For dimensional reasons, we define

ζ[M+m2]/µ2(s) = µ2sζ[M+m2](s) = µ2s
∑

λ

(λ + m2)−s , (2.1)

where the sum is over the spectrum of M, and µ is an arbitrary parameter with dimension
of a mass. Physically, µ plays the role of a renormalization scale. Then the logarithm of the
determinant is defined as [4, 5, 7]

ln det[M + m2] ≡ −ζ ′
[M+m2]/µ2(0)

= −ln(µ2)ζ[M+m2](0) − ζ ′
[M+m2](0). (2.2)
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To compute the determinant ratio, we define the zeta function difference

ζ(s) ≡ ζ[M+m2](s) − ζ[Mfree+m2](s). (2.3)

Thus we need to compute the zeta function and its derivative, each evaluated at s = 0. In
general, the zeta function at s = 0 is related to the heat kernel coefficient, ad/2(P), associated
with the operator P [10, 20]:

ζP(0) = ad/2(P). (2.4)

For the operator P = −� − E, these heat kernel coefficients are [10] given in R
d by

a1(P) = 1

(4π)d/2

∫
R

d

ddxE (2.5)

a3/2(P) = 0 (2.6)

a2(P) = 1

(4π)d/2

∫
R

d

ddx
E2

2
. (2.7)

Thus, setting E = −V (r) − m2, and Efree = −m2, we find

ζ(0) =




−1

2

∫ ∞

0
dr rV (r), d = 2

0, d = 3

1

16

∫ ∞

0
dr r3V (V + 2m2), d = 4.

(2.8)

The derivative of the zeta function at s = 0, ζ ′(0), can be evaluated using the relation to
the Jost functions of scattering theory [21, 22]; for the application of these ideas to the Casimir
effect see [23]. Consider the radial eigenvalue equation

M(l)φ(l),p = p2φ(l),p, (2.9)

where M(l) is the Schrödinger-like radial operator defined in (1.5). A distinguished role is
played by the so-called regular solution, φ(l),p(r), which is defined to have the same behaviour
as r → 0 as the solution without potential:

φ(l),p(r) ∼
r→0

ĵ l+(d−3)/2(pr). (2.10)

Here the spherical Bessel function ĵ l+(d−3)/2 is defined as

ĵ l+(d−3)/2(z) =
√

πz

2
Jl+d/2−1(z).

The asymptotic behaviour of the regular solution, φ(l),p(r), as r → ∞ defines the Jost function,
fl(p), [21]

φ(l),p(r) ∼
r→0

i

2

[
fl(p)ĥ−

l+(d−3)/2(pr) − f ∗
l (p)ĥ+

l+(d−3)/2(pr)
]
. (2.11)

Here ĥ−
l+(d−3)/2(pr) and ĥ+

l+(d−3)/2(pr) are the Riccati–Hankel functions

ĥ+
l+(d−3)/2(z) = i

√
πz

2
H

(1)
l+d/2−1(z), ĥ−

l+(d−3)/2(z) = −i

√
πz

2
H

(2)
l+d/2−1(z).

As is well known from scattering theory [21, 22], the analytic properties of the Jost
function fl(p) strongly depend on the properties of the potential V (r). Analyticity of the Jost
function as a function of p for Imp > 0 is guaranteed, if in addition to the aforementioned
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behaviour as r → ∞, we impose V (r) ∼ r−2+ε for r → 0, and continuity of V (r) in
0 < r < ∞ (except perhaps at a finite number of finite discontinuities). For us, the analytic
properties of the Jost function in the upper half plane will be of particular importance because
they are related to the shifting of contours in the complex momentum plane.

By standard contour manipulations [10], the zeta function can be expressed in terms of
the Jost functions as:

ζ(s) = sin πs

π

∞∑
l=0

deg(l; d)

∫ ∞

m

dk[k2 − m2]−s ∂

∂k
ln fl(ik). (2.12)

This representation is valid for Re s > d/2, and the technical problem is the construction of
the analytic continuation of (2.12) to a neighbourhood about s = 0. If expression (2.12) were
analytic at s = 0, then we would deduce that

ζ ′(0) = −
∞∑
l=0

deg(l; d) ln fl(im). (2.13)

From the definition (2.11) of the Jost function,

fl(im) = φ(l),im(∞)

φfree
(l),im(∞)

= ψ(l)(∞)

ψ free
(l) (∞)

, (2.14)

where ψ(l)(r) is defined in (1.11). Thus, the regulated expression (2.13) coincides with
the formal partial wave expansion (1.7), using the Gel’fand–Yaglom result (1.3) for each
l. However, the expansion (2.13) is divergent in positive integer dimensions. In the zeta
function approach, the divergence of the formal sum in (2.13) is directly related to the need
for analytic continuation of ζ(s) in s to a region including s = 0. From (2.12), this analytic
continuation relies on the uniform asymptotic behaviour of the Jost function fl(ik). Denoting
this behaviour by f

asym
l (ik), the analytic continuation is achieved by adding and subtracting

the leading asymptotic terms of the integrand in (2.12) to write

ζ(s) = ζf (s) + ζas(s), (2.15)

where

ζf (s) = sin(πs)

π

∞∑
l=0

deg(l; d)

∫ ∞

m

dk[k2 − m2]−s ∂

∂k

[
ln fl(ik) − ln f

asym
l (ik)

]
, (2.16)

and

ζas(s) = sin(πs)

π

∞∑
l=0

deg(l; d)

∫ ∞

m

dk[k2 − m2]−s ∂

∂k
ln f

asym
l (ik). (2.17)

Ultimately we are interested in the analytic continuation of ζ(s) to s = 0. As many asymptotic
terms will be included in f

asym
l (ik) as are necessary to make ζf (s) as given in (2.16) analytic

around s = 0. On the other hand, for ζas(s) the analytic continuation to s = 0 can be
constructed in closed form using an explicit representation of the asymptotic behaviour of the
Jost function, derived in the next section.

2.1. Asymptotics of the Jost function

The asymptotics of the Jost function fl(ik) follows from standard results in scattering theory
[21]. The starting point is the integral equation for the regular solution

φ(l),p(r) = ĵ l+(d−3)/2(pr) +
∫ r

0
dr ′ Gl,p(r, r ′)V (r ′)φ(l),p(r ′), (2.18)
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with Green’s function

Gl,p(r, r ′) = i

2p

[
ĥ−

l+(d−3)/2(pr)ĥ+
l+(d−3)/2(pr ′) − ĥ+

l+(d−3)/2(pr)ĥ−
l+(d−3)/2(pr ′)

]
. (2.19)

Asymptotically for r → ∞,

φ(l),p(r) ∼ ĵ l+(d−3)/2(pr) +
∫ ∞

0
dr ′ Gl,p(r, r ′)V (r ′)φ(l),p(r ′). (2.20)

Noting that
[
ĥ±

ν (x)
]∗ = ĥ∓

ν (x), for x real, this asymptotic behaviour can be written as

φ(l),p(r) ∼ i

2

{[
1 +

1

p

∫ ∞

0
dr ′ ĥ+

l+(d−3)/2(pr ′)V (r ′)φ(l),p(r ′)
]

ĥ−
l+(d−3)/2(pr)

−
[

1 +
1

p

∫ ∞

0
dr ′ ĥ+

l+(d−3)/2(pr ′)V (r ′)φ(l),p(r ′)
]∗

ĥ+
l+(d−3)/2(pr)

}
.

Comparing with the definition (2.11) of the Jost function, we find the following integral
equation for the Jost function:

fl(p) = 1 +
1

p

∫ ∞

0
d rĥ+

l+(d−3)/2(pr)V (r)φ(l),p(r). (2.21)

For the zeta function (2.12) we need the Jost function for imaginary argument, so we rotate
using the Bessel function properties [24]

Iν(z) = e− π
2 νiJν(iz), Kν(z) = π i

2
e

π
2 νiH(1)

ν (iz).

Thus (2.21) becomes

fl(ik) = 1 +
∫ ∞

0
dr rV (r)φ(l),ik(r)Kl+d/2−1(kr). (2.22)

We define a convenient short hand for the Bessel function index,

ν ≡ l +
d

2
− 1, (2.23)

and write the partial-wave Lippmann-Schwinger integral equation for the regular solution as

φ(l),ik (r) = Iν(kr) +
∫ r

0
dr ′ r ′[Iν(kr)Kν(kr ′) − Iν(kr ′)Kν(kr)]V (r ′)φ(l),ik (r ′). (2.24)

This Lippmann-Schwinger equation leads to an iterative expansion for fl(ik) in powers of
the potential V (r). For dimensions d � 4, we need at most the O(V ) and O(V 2) terms of
ln fl(ik):

ln fl(ik) =
∫ ∞

0
dr rV (r)Kν(kr)Iν(kr)−

∫ ∞

0
dr rV (r)K2

ν (kr)

×
∫ r

0
dr ′ r ′V (r ′)I 2

ν (kr ′) + O(V 3). (2.25)

This iterative scheme effectively reduces the calculation of the asymptotics of the Jost function
to the known uniform asymptotics of the modified Bessel functions Kν and Iν [24]. To the
required order, for ν → ∞, k → ∞, with k/ν fixed,

Iν(kr)Kν(kr) ∼ t

2ν
+

t3

16ν3
(1 − 6t2 + 5t4) + O

(
1

ν4

)
,

Iν(kr ′)Kν(kr) ∼ 1

2ν

e−ν(η(k)−η(kr ′/r))

(1 + (kr/ν)2)1/4(1 + (kr ′/ν)2)1/4

[
1 + O

(
1

ν

)]
,

(2.26)
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where t ≡ 1
/√

1 + (kr/ν)2, and η(k) ≡
√

1 + (kr/ν)2 + ln
[
(kr/ν)

/(
1 +

√
1 + (kr/ν)2

)]
.

The r ′ integration in the term quadratic in V is performed by the saddle point method [10].
We therefore define ln f

asym
l (ik) as the O(V ) and O(V 2) parts of this uniform asymptotic

expansion:

ln f
asym
l (ik) ≡ 1

2ν

∫ ∞

0
dr

rV (r)[
1 +

(
kr
ν

)2]1/2 +
1

16ν3

∫ ∞

0
dr

rV (r)[
1 +

(
kr
ν

)2 ]3/2

×
[

1 − 6[
1 +

(
kr
ν

)2] +
5[

1 +
(

kr
ν

)2]2
]

− 1

8ν3

∫ ∞

0
dr

r3V 2(r)[
1 +

(
kr
ν

)2]3/2 . (2.27)

2.2. Computing ζ ′
f (0)

By construction, ζf (s), defined in (2.16), is now well defined at s = 0, and we find

ζ ′
f (0) = −

∞∑
l=0

deg(l; d)
[
ln fl(im) − ln f

asym
l (im)

]
. (2.28)

This form is suitable for straightforward numerical computation, as the Jost function fl(im)

can be computed using (1.11) and (2.14), while ln f
asym
l (im) can be computed using (2.27).

With the subtraction of ln f
asym
l (im) in (2.28), the l sum is now convergent.

However, it is possible to find an even simpler expression. It turns out that the subtraction
in (2.28) is an over-subtraction. To see this, expand ln f

asym
l (im) into its large l behaviour as

follows:

ln f
asym
l (im) ∼ 1

2ν

∫ ∞

0
dr rV (r) − 1

8ν3

∫ ∞

0
dr r3V (V + 2m2)

+
1

2ν

∫ ∞

0
dr rV (r)

{[
1 +

(mr

ν

)2
]−1/2

− 1 +
1

2

(mr

ν

)2
}

+
1

16ν3

∫ ∞

0
dr

rV (r)[
1 +

(
mr
ν

)2]3/2

[
1 − 6[

1 +
(

mr
ν

)2] +
5[

1 +
(

mr
ν

)2]2
]

− 1

8ν3

∫ ∞

0
dr r3V 2(r)

{[
1 +

(mr

ν

)2
]−3/2

− 1

}
. (2.29)

The first term is O
(

1
l

)
, and the second is O

(
1
l3

)
, while the remaining terms are all O

(
1
l5

)
.

In dimensions d � 4, the degeneracy factor deg(l; d) is at most quadratic in l, and so these
last terms are finite when summed over l in (2.28). (In fact, in d = 2 and d = 3, the O

(
1
l3

)
terms are also finite when summed over l.) In the next section we show that these finite
terms cancel exactly against corresponding terms arising in the evaluation of ζ ′

as(0). Thus, for
ζ ′(0) = ζ ′

f (0) + ζ ′
as(0), we only actually need to subtract the leading large l terms in (2.29),

rather than the full asymptotics in (2.27).

2.3. Computing ζ ′
as(0)

The explicit form of the asymptotic terms in (2.27) provides the analytic continuation to s = 0
of ζas(s), as defined in (2.17). The k integrals are done using∫ ∞

m

dk[k2 − m2]−s ∂

∂k

[
1 +

(
kr

ν

)2
]− n

2

= −�
(
s + n

2

)
�(1 − s)

�(n/2)

(
ν

mr

)n
m−2s(

1 +
(

ν
mr

)2 )s+ n
2
. (2.30)
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Therefore, we find

ζas(s) = −
∞∑
l=0

deg(l; d)

[∫ ∞

0
dr r1+2sV (r)

{
1

2

�
(
s + 1

2

)
�(s)�

(
1
2

) ν−1−2s(
1 +

(
mr
ν

)2)s+1/2

+
1

16

�
(
s + 3

2

)
�(s)�

(
3
2

) ν−3−2s(
1 +

(
mr
ν

)2)s+3/2 − 3

8

�
(
s + 5

2

)
�(s)�

(
5
2

) ν−3−2s(
1 +

(
mr
ν

)2)s+5/2

+
5

16

�
(
s + 7

2

)
�(s)�

(
7
2

) ν−3−2s(
1 +

(
mr
ν

)2)s+7/2

}

−
∫ ∞

0
dr r3+2sV 2(r)

1

8

�
(
s + 3

2

)
�(s)�

(
3
2

) ν−3−2s(
1 +

(
mr
ν

)2)s+3/2

]
. (2.31)

We now subtract sufficiently many terms inside the l sum to ensure the analytic continuation
of ζas(s) to s = 0. The added back terms produce Riemann zeta function terms, such as
ζR(2s + 1), whose analytic continuation is immediate. For example, in d = 4, where ν = l + 1,
and deg(l; 4) = (l + 1)2 = ν2, the first term in (2.31) involves the function

R1(s) ≡ �
(
s + 1

2

)
r2s

�(s)�
(

1
2

) ∞∑
ν=1

ν1−2s(
1 +

(
mr
ν

)2)s+1/2 . (2.32)

The analytic continuation of this function to s = 0 is

R1(s) = �
(
s + 1

2

)
r2s

�(s)�
(

1
2

)
[ ∞∑

ν=1

ν1−2s

{(
1 +

(mr

ν

)2
)−s−1/2

− 1 +

(
s +

1

2

)(mr

ν

)2
}

+ ζR(2s − 1) −
(

s +
1

2

)
(mr)2ζR(2s + 1)

]
. (2.33)

A straightforward computation yields the derivative at s = 0:

R′
1(0) =

∞∑
ν=1

ν

{(
1 +

(mr

ν

)2
)−1/2

− 1 +
1

2

(mr

ν

)2
}

− 1

2
(mr)2

[
ln
( r

2

)
+ γ + 1

]
+ ζR(−1).

(2.34)

Applying this strategy to the remaining terms in (2.31) leads to

ζ ′
as(0)|d=4 = 1

8

∫ ∞

0
dr r3V (V + 2m2)

[
ln
( r

2

)
+ γ + 1

]

−
∫ ∞

0
dr rV (r)

{
1

2

∞∑
ν=1

ν

[(
1 +

(mr

ν

)2
)−1/2

− 1 +
1

2

(mr

ν

)2
]

+
1

16

∞∑
ν=1

1

ν

×
[(

1 +
(mr

ν

)2
)−3/2

− 6

(
1 +

(mr

ν

)2
)−5/2

+ 5

(
1 +

(mr

ν

)2
)−7/2

]}

+
1

8

∫ ∞

0
dr r3V 2(r)

∞∑
ν=1

1

ν

[(
1 +

(mr

ν

)2
)−3/2

− 1

]
. (2.35)

Note that the terms involving summation over ν cancel exactly against identical terms in
ζ ′
f (0) from (2.29), after those terms are summed over l with the d = 4 degeneracy factor

ν2 = (l + 1)2. Furthermore, note that the ln r term inside the integral on the first line of (2.35)



Functional determinants for radial operators 11923

is precisely of the same form as the renormalization term in (2.8), so the ln µ in (2.2) combines
with ln r to form the dimensionless combination ln(µr) in (1.10).

The analogous computation in d = 3, with degeneracy factor deg(l; 3) = (2l + 1) = 2ν,
leads to

ζ ′
as(0)|d=3 = −

∫ ∞

0
dr rV (r)




∞∑
l=0




1 +

(
mr

l + 1
2

)2



− 1
2

− 1


 +

1

8

∞∑
l=0

1(
l + 1

2

)2

×

 1(

1 +
(

mr

l+ 1
2

)2)3/2 − 6(
1 +

(
mr

l+ 1
2

)2)5/2
+

5(
1 +

(
mr

l+ 1
2

)2)7/2






+
1

4

∫ ∞

0
dr r3V 2(r)

∞∑
l=0

1(
l + 1

2

)2


1 +

(
mr

l + 1
2

)2



−3/2

. (2.36)

In this case, all terms in (2.36) cancel against corresponding terms in (2.29), after summing
over l with degeneracy factor 2ν in d = 3. The only remaining uncancelled term in (2.29) is
the first term, which is linear in V , and is the subtraction shown in (1.9). This shows that in
dimension d = 3 we did not actually need to expand ln f

asym
l (ik) to O(V 2) in the first place;

the O(V ) term would have been sufficient.
The d = 2 case is slightly different, as we need to separate the l = 0 term from the sum.

Here ν = l, and the degeneracy factor is 1 for l = 0, and 2 for l � 1. Thus, instead of (2.28)
we have

ζ ′
f (0)|d=2 = −lnf0(im) −

∞∑
l=1

2
[
ln fl(im) − ln f

asym
l (im)

]
. (2.37)

And in two dimensions (2.17) is

ζas(s)|d=2 = sin(πs)

π

∞∑
l=1

2
∫ ∞

m

dk[k2 − m2]−s ∂

∂k
ln f

asym
l (ik). (2.38)

Then the analogous computation in d = 2 leads to

ζ ′
as(0)|d=2 = −

∫ ∞

0
dr rV (r)

[
ln
( r

2

)
+ γ
]

−
∫ ∞

0
dr rV (r)

{ ∞∑
l=1

1

l

[(
1 +

(mr

l

)2
)−1/2

−1

]

+
1

8

∞∑
l=1

1

l3

[(
1 +

(mr

l

)2
)−3/2

− 6

(
1 +

(mr

l

)2
)−5/2

+ 5

(
1 +

(mr

l

)2
)−7/2

]}

+
1

4

∫ ∞

0
dr r3V 2(r)

∞∑
l=1

1

l3

(
1 +

(mr

l

)2
)−3/2

. (2.39)

As in the d = 4 case, all terms involving l summation cancel exactly against identical terms
in (2.29), after summing those over l, with the d = 2 degeneracy factors. As in d = 3, the
only remaining uncancelled term in (2.29) is the first term, which is linear in V , and is the
subtraction shown in (1.8). This shows that also in dimension d = 2, we did not need to
expand ln f

asym
l (ik) to O(V 2) in the first place; the O(V ) term would have been sufficient.

3. Comparison with Feynman diagram approach

In this section we show that our zeta function computation is equivalent to the Feynman
diagrammatic expansion for the logarithm of the determinant [2, 18], although the zeta
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function approach provides a much simpler form of the final expression. Consider regulating
the determinant with dimensional regularization. The perturbative expansion in powers of the
potential V is [2]

ln

(
det[M + m2]

det[Mfree + m2]

)
≡

∞∑
k=1

(−1)k+1

k
A(k)

= − 1

2
+

1

3
+ · · · , (3.1)

where the dots denote insertions of the potential V . Alternatively, we can expand the
dimensionally regulated determinant in partial waves as

ln

(
det[M + m2]

det[Mfree + m2]

)
=

∞∑
l=0

deg(l; d) ln

(
det[M(l) + m2]

det
[
Mfree

(l) + m2
]
)

=
∞∑
l=0

deg(l; d) ln fl(im). (3.2)

In the Feynman diagrammatic approach [18], the first two order terms, A(1) and A(2), are
separated out:

ln

(
det[M + m2]

det[Mfree + m2]

)
=

∞∑
l=0

deg(l; d){ln fl(im) − [ln fl(im)]O(V ) − [ln fl(im)]O(V 2)}

+ A(1) − 1

2
A(2). (3.3)

With these subtractions, the l sum is now finite, and the divergence lies in the dimensionally
regulated Feynman diagrams A(1) and A(2). We now show how to relate the expression (3.3)
to the zeta function approach.

Using dimensional regularization, the first-order Feynman diagram is

A(1) =
∫

ddx V (x) lim
x→y

G(x, y). (3.4)

The Helmholtz Green’s function in d dimensions is

G(x, y) = md−2

(2π)d/2

Kd/2−1(m|x − y|)
(m|x − y|)d/2−1

. (3.5)

We now use the Gegenbauer expansion [25]

Kν(|x − y|)
|x − y|ν = 2ν�(ν)

∞∑
l=0

(l + ν)
Kl+ν(r)

rν

Il+ν(r
′)

(r ′)ν
Cν

l (cos θ), (3.6)

where |x − y| =
√

r2 + (r ′)2 − 2r r ′ cos θ . As x → y, noting that C
d/2−1
l (1) = (

l+d−3
l

)
, we

find

A(1) =
∫ ∞

0
dr rV (r)

∞∑
l=0

(2l + d − 2)

(d − 2)

(
l + d − 3

l

)
Kl+d/2−1(mr)Il+d/2−1(mr)

=
∞∑
l=0

deg(l; d)[ln fl(im)]O(V ), (3.7)

in agreement with the O(V ) term in the iterative expansion for ln fl(im) in (2.25).



Functional determinants for radial operators 11925

Similarly, the second-order Feynman diagram is

A(2) =
∫

ddx

∫
ddy V (x)G(x, y)V (y)G(y, x). (3.8)

Using the Gegenbauer expansion (3.6), together with the identity [19]∫ π

0
dθ(sin θ)2νCν

l (cos θ)Cν
l′ (cos θ) = δll′

π21−2ν�(2ν + l)

l!(l + ν)�2(ν)
, (3.9)

we find

A(2) = 2
∞∑
l=0

deg(l; d)

∫ ∞

0
dr rV (r)K2

l+d/2−1(mr)

∫ r

0
dr ′r ′V (r ′)I 2

l+d/2−1(mr ′)

= −2
∞∑
l=0

deg(l; d)[ln fl(im)]O(V 2). (3.10)

Thus, − 1
2A(2) agrees with the O(V 2) term in the iterative expansion for ln fl(im) in (2.25),

when summed over l with the appropriate degeneracy factor. Therefore, the Feynman
diagrammatic expression (3.3) is indeed equivalent to the zeta function expression (2.13),
with dimensional regularization.

Now compare also the finite parts. In the Feynman diagrammatic approach [18], the
finite renormalized logarithm of the determinant ratio is defined by the subtractions in (3.3),
together with the finite renormalized form of the first two Feynman diagrams, A(1) and A(2).
For definiteness we consider the d = 4 case, in order to compare with previous work [16, 18].
Then the renormalized logarithm of the determinant ratio is [18]

ln

(
det[M + m2]

det[Mfree + m2]

)
=

∞∑
l=0

(l + 1)2{ln fl(im) − [ln fl(im)]O(V ) − [ln fl(im)]O(V 2)}

+ A
(1)
fin − 1

2
A

(2)
fin =

∞∑
l=0

(l + 1)2

{
ln

(
ψ(l)(∞)

ψ free
(l) (∞)

)
− [ln fl(im)]O(V )

− [ln fl(im)]O(V 2)

}
+ A

(1)
fin − 1

2
A

(2)
fin , (3.11)

where we have used (2.14) to identify ln fl(im) with ψ(l)(∞)
/
ψ free

(l) (∞). In [18], the
subtraction terms are defined as

[ln fl(im)]O(V ) ≡ h
(1)
l (∞), [ln fl(im)]O(V 2) ≡ h

(2)
l (∞) − 1

2

(
h

(1)
l (∞)

)2
, (3.12)

where h
(k)
l (r) is the solution to the differential equation[

d2

dr2
+

(
2mI ′

l+1(mr)

Il+1(mr)
+

1

r

)
d

dr

]
h

(k)
l (r) = V (r)h

(k−1)
l (r)

h
(k)
l (0) = 0, h

(k)′
l (0) = 0, h

(0)
l ≡ 1.

(3.13)

Comparing with (2.25), we can alternatively express these subtracted terms as

[ ln fl(im)]O(V ) =
∫ ∞

0
dr rV (r)Kν(mr)Iν(kr)

[ ln fl(im)]O(V 2) = −
∫ ∞

0
dr rV (r)K2

ν (mr)

∫ r

0
dr ′r ′V (r ′)I 2

ν (mr ′).
(3.14)
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Finally, the finite contributions in (3.11) from the first- and second-order Feynman diagrams
in the MS scheme are [18] (note the small typo in equation (4.32) of [18])

A
(1)
fin = −m2

8

∫ ∞

0
dr r3V (r)

A
(2)
fin = 1

128π4

∫ ∞

0
dq q3|Ṽ (q)|2

[
2 −

√
4m2 + q2

q
ln

( √
4m2 + q2 + q√
4m2 + q2 − q

)]
,

(3.15)

where Ṽ (q) is the four-dimensional Fourier transform of the radial potential V (r).
With the terms subtracted in (3.11) (evaluated using either (3.13) or (3.14)), the l

sum is convergent. So this expression yields a finite answer for the logarithm of the
determinant. On the other hand, the actual subtraction terms and counterterms in (3.11)
are different from those in (1.10), even though the final net answer for the finite renormalized
determinant is numerically the same. The difference between the two approaches is
that in (3.11) one subtracts the full O(V ) and O(V 2) dependence of ln fl(im), given in
(2.25), and then compensates this subtraction with the Feynman diagram counter-terms
whose finite part in the MS scheme are given in (3.15). On the other hand, in the zeta
function computation, we subtract just the asymptotic form of these first two Feynman
diagrams, as in (2.27), as is required to analytically continue the zeta function to s = 0.
Subsequently, in the zeta function approach we note that even this is an over-subtraction, as
part of this asymptotic behaviour cancels against ζ ′

as(0), leaving the final expression (1.10).
The regularized form of these zeta function subtractions is different from the regularized
form of the Feynman diagrammatic subtractions, but the associated counter-terms are also
different, in such a way that the net result for the determinant is identical. This follows
analytically from (3.7) and (3.10), and can easily be confirmed numerically. This also
serves as an explanation of similar effects noted in one-loop static energy computations
[26, 27]. However, we note that the zeta function expression (1.10) has a significantly
simpler form, with the subtractions only requiring simple integrals involving V (r), while
the subtractions in (3.11) require the more complicated integrals (3.14) (or, equivalently,
solving the differential equations in (3.13)), and also require the Fourier transform of the
potential in (3.15).

4. Conclusions

To conclude, we have derived simple new expressions, (1.8)–(1.10), for the determinant of
a radially separable partial differential operator of the form −� + m2 + V (r), generalizing
the Gel’fand–Yaglom result (1.3) to higher dimensions. This greatly increases the class of
differential operators for which the determinant can be computed simply and efficiently. Our
derivation uses the zeta function definition of the determinant, but the same expressions can
be found using the radial WKB approach of [16, 17]. Furthermore, we have shown how
these expressions relate to the Feynman diagrammatic definition of the determinant based on
dimensional regularization [18]. These superficially different expressions are in fact equal,
although the zeta function expression is considerably simpler.

A number of generalizations could be made. First, in certain quantum field theory
applications the determinant may have zero modes, and correspondingly one is actually
interested in computing the determinant with these zero modes removed. Our method
provides a simple way to compute such determinants. For example, in the false vacuum decay
problem [28–31] arising in a self-interacting scalar field theory in d-dimensional spacetime, the
prefactor for the semiclassical decay rate involves the functional determinant of the fluctuation
operator for quantum fluctuations about a radial classical bounce solution �cl(r). This
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fluctuation operator is a radially separable operator of the form considered in this paper, but
there is a d-fold degenerate zero mode in the l = 1 sector, associated with translational
invariance of the classical bounce solution. It is straightforward to generalize the analysis
of [16] for the d = 4 case to other dimensions, to find that the net prefactor contribution
from these l = 1 zero modes (including the collective coordinate factor [3, 32]) has a simple
expression solely in terms of the asymptotic behaviour of the bounce solution:(

S[�cl]

2π

)d/2
(

det′[M(l=1) + m2]

det
[
Mfree

(l=1) + m2
]
)−1/2

= [(2π)d/2−1�∞|�′′
cl(0)|]d/2. (4.1)

Here the constant �∞ is defined by the normalization of the asymptotic large r behaviour of
the bounce: �cl(r) ∼ �∞r1−d/2Kd/2−1(r). Another important generalization is to include
directly the matrix structure that arises from Dirac-like differential operators and from non-
Abelian gauge degrees of freedom. The Feynman diagrammatic approach is well developed
for such separable problems [33]; for example it has been applied to the fluctuations about the
electroweak sphaleron [34, 35], and to compute the metastability of the electroweak vacuum
[36]. More recently, the angular momentum cut-off method has been used to compute the
full mass dependence of the fermion determinant in a four-dimensional Yang–Mills instanton
background [17], to compute the fermion determinant in a background instanton in the two-
dimensional chiral Higgs model [37], and to address the fluctuation problem for false vacuum
decay in curved space [38]. A unified zeta function analysis should be possible, as there is
a straightforward generalization of the Gel’fand–Yaglom result (1.3) to systems of ordinary
differential operators [14].

Acknowledgments

GD thanks the US DOE for support through grant DE-FG02-92ER40716. KK acknowledges
support by the Baylor University Summer Sabbatical Program and by the Baylor University
Research Committee.

References

[1] Salam A and Matthews P T 1953 Fredholm theory of scattering in a given time dependent field Phys. Rev. 90 690
Schwinger J 1954 The theory of quantized fields: VI Phys. Rev. 94 1362

[2] Salam A and Strathdee J A 1974 Comment on the computation of effective potentials Phys. Rev. D 9 1129
Jackiw R 1974 Functional evaluation of the effective potential Phys. Rev. D 9 1686
Iliopoulos J, Itzykson C and Martin A 1975 Functional methods and perturbation theory Rev. Mod. Phys. 47 165

[3] Coleman S R 1979 The Uses of Instantons Lectures delivered at 1977 International School of Subnuclear
Physics, Erice: The Whys of Subnuclear Physics ed A Zichichi (New York: Plenum)

[4] Ray D B and Singer I M 1971 R-Torsion and the Laplacian on Riemannian manifolds Adv. Math. 7 145
[5] Hawking S W 1977 Zeta function regularization of path integrals in curved space-time Commun. Math.

Phys. 55 133
[6] Dowker J S 1994 Functional determinants on spheres and sectors J. Math. Phys. 35 4989
[7] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with

Applications (Singapore: World Scientific)
[8] D’Hoker E and Phong D H 1986 On determinants of Laplacians on Riemann surfaces Commun. Math.

Phys. 104 537
[9] Sarnak P 1987 Determinants of Laplacians Commun. Math. Phys. 110 113

[10] Kirsten K 2002 Spectral Functions in Mathematics and Physics (Boca Raton: Chapman-Hall)
[11] Gel’fand I M and Yaglom A M 1960 Integration in functional spaces and it applications in quantum physics

J. Math. Phys. 1 48
[12] Levit S and Smilansky U 1977 A theorem on infinite products of eigenvalues of Sturm-Liouville type operators

Proc. Am. Math. Soc. 65 299
[13] Forman R 1987 Functional determinants and geometry Invent. Math. 88 447

Forman R 1992 Invent. Math. 108 453 (erratum)

http://dx.doi.org/10.1103/PhysRev.90.690
http://dx.doi.org/10.1103/PhysRev.94.1362
http://dx.doi.org/10.1103/PhysRevD.9.1129
http://dx.doi.org/10.1103/PhysRevD.9.1686
http://dx.doi.org/10.1103/RevModPhys.47.165
http://dx.doi.org/10.1016/0001-8708(71)90045-4
http://dx.doi.org/10.1007/BF01626516
http://dx.doi.org/10.1063/1.530826
http://dx.doi.org/10.1007/BF01211063
http://dx.doi.org/10.1007/BF01209019
http://dx.doi.org/10.1063/1.1703636
http://dx.doi.org/10.2307/2041911
http://dx.doi.org/10.1007/BF01391828
http://dx.doi.org/10.1007/BF02100614


11928 G V Dunne and K Kirsten

[14] Kirsten K and McKane A J 2003 Functional determinants by contour integration methods Ann. Phys. 308 502
(Preprint math-ph/0305010)

Kirsten K and McKane A J 2004 Functional determinants for general Sturm-Liouville problems J. Phys. A:
Math. Gen. 37 4649 (Preprint math-ph/0403050)

[15] Kleinert H 2004 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
(Singapore: World Scientific)

[16] Dunne G V and Min H 2005 Beyond the thin-wall approximation: precise numerical computation of prefactors
in false vacuum decay Phys. Rev. D 72 125004 (Preprint hep-th/0511156)

[17] Dunne G V, Hur J, Lee C and Min H 2004 Instanton determinant with arbitrary quark mass: WKB phase-shift
method and derivative expansion Phys. Lett. B 600 302 (Preprint hep-th/0407222)

Dunne G V, Hur J, Lee C and Min H 2005 Precise quark mass dependence of instanton determinant Phys. Rev.
Lett. 94 072001 (Preprint hep-th/0410190)

Dunne G V, Hur J, Lee C and Min H 2005 Calculation of QCD instanton determinant with arbitrary mass
Phys. Rev. D 71 085019 (Preprint hep-th/0502087)

[18] Baacke J and Lavrelashvili G 2004 One-loop corrections to the metastable vacuum decay Phys. Rev. D 69 025009
(Preprint hep-th/0307202)

[19] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (San Diego: Academic)
[20] Seeley R T 1968 Complex powers of an elliptic operator Singular Integrals: Proc. Symp. Pure Math. (Chicago,

1966) vol 10 (Providence, RI: American Mathematical Society) p 288
[21] Taylor J R 1972 Scattering Theory (New York: Wiley)
[22] de Alfaro V and Regge T 1965 Potential Scattering (New York: Wiley)
[23] Bordag M and Kirsten K 1996 Vacuum energy in a spherically symmetric background field Phys. Rev. D 53 5753
[24] Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
[25] Watson G N 1962 Theory of Bessel Functions (Cambridge: Cambridge University Press) chapter XI
[26] Farhi E, Graham N, Jaffe R L and Weigel H 2002 Searching for quantum solitons in a 3+1 dimensional chiral

Yukawa model Nucl. Phys. B 630 241 (Preprint hep-th/0112217)
[27] Graham N and Olum K D 2003 Negative energy densities in quantum field theory with a background potential

Phys. Rev. D 67 085014 (Preprint hep-th/0211244)
Graham N and Olum K D 2004 Phys. Rev. D 69 109901 (erratum)

[28] Langer J S 1967 Theory of the condensation point Ann. Phys. 41 108
[29] Voloshin M B, Kobzarev I Y and Okun L B 1974 Bubbles in metastable vacuum Yad. Fiz. 20 1229

Voloshin M B, Kobzarev I Y and Okun L B 1975 Bubbles in metastable vacuum Sov. J. Nucl. Phys. 20 644
(Engl. Transl.)

[30] Stone M 1976 The lifetime and decay of ‘excited vacuum’ states of a field theory associated with nonabsolute
minima of its effective potential Phys. Rev. D 14 3568

Stone M 1977 Semiclassical methods for unstable states Phys. Lett. B 67 186
[31] Coleman S R 1977 The fate of the false vacuum: 1. Semiclassical theory Phys. Rev. D 15 2929

Coleman S R 1977 The fate of the false vacuum: 1. Semiclassical theory Phys. Rev. D 16 1248 (erratum)
Callan C G and Coleman S R 1977 The fate of the false vacuum: 2. First quantum corrections Phys. Rev.

D 16 1762
[32] Gervais J L and Sakita B 1977 WKB wave function for systems with many degrees of freedom: a unified view

of solitons and pseudoparticles Phys. Rev. D 16 3507
[33] Baacke J 1990 Numerical evaluation of the one loop effective action in static backgrounds with spherical

symmetry Z. Phys. C 47 263
Baacke J 1992 The effective action of a spin 1/2 field in the background of a chiral soliton Z. Phys. C 53 407

[34] Carson L, Li X, McLerran L D and Wang R T 1990 Exact computation of the small fluctuation determinant
around a sphaleron Phys. Rev. D 42 2127

[35] Baacke J and Junker S 1994 Quantum fluctuations around the electroweak sphaleron Phys. Rev. D 49 2055
(Preprint hep-ph/9308310)

Baacke J and Junker S 1994 Quantum fluctuations of the electroweak sphaleron: erratum and addendum
Phys. Rev. D 50 4227 (Preprint hep-th/9402078)

[36] Isidori G, Ridolfi G and Strumia A 2001 On the metastability of the standard model vacuum Nucl. Phys.
B 609 387 (Preprint hep-ph/0104016)

[37] Burnier Y and Shaposhnikov M 2005 One-loop fermionic corrections to the instanton transition in two
dimensional chiral Higgs model Phys. Rev. D 72 065011 (Preprint hep-ph/0507130)

[38] Dunne G V and Wang Q h 2006 Fluctuations about cosmological instantons Phys. Rev. D 74 024018 (Preprint
hep-th/0605176)

http://dx.doi.org/10.1016/S0003-4916(03)00149-0
http://www.arxiv.org/abs/math-ph/0305010
http://dx.doi.org/10.1088/0305-4470/37/16/014
http://www.arxiv.org/abs/math-ph/0403050
http://dx.doi.org/10.1103/PhysRevD.72.125004
http://www.arxiv.org/abs/hep-th/0511156
http://dx.doi.org/10.1016/j.physletb.2004.09.012
http://www.arxiv.org/abs/hep-th/0407222
http://dx.doi.org/10.1103/PhysRevLett.94.072001
http://www.arxiv.org/abs/hep-th/0410190
http://dx.doi.org/10.1103/PhysRevD.71.085019
http://www.arxiv.org/abs/hep-th/0502087
http://dx.doi.org/10.1103/PhysRevD.69.025009
http://www.arxiv.org/abs/hep-th/0307202
http://dx.doi.org/10.1103/PhysRevD.53.5753
http://dx.doi.org/10.1016/S0550-3213(02)00172-4
http://www.arxiv.org/abs/hep-th/0112217
http://dx.doi.org/10.1103/PhysRevD.67.085014
http://www.arxiv.org/abs/hep-th/0211244
http://dx.doi.org/10.1103/PhysRevD.69.109901
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1103/PhysRevD.14.3568
http://dx.doi.org/10.1016/0370-2693(77)90099-5
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://dx.doi.org/10.1103/PhysRevD.16.1248
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://dx.doi.org/10.1103/PhysRevD.16.3507
http://dx.doi.org/10.1007/BF01552348
http://dx.doi.org/10.1007/BF01625899
http://dx.doi.org/10.1103/PhysRevD.42.2127
http://dx.doi.org/10.1103/PhysRevD.49.2055
http://www.arxiv.org/abs/hep-ph/9308310
http://dx.doi.org/10.1103/PhysRevD.50.4227
http://www.arxiv.org/abs/hep-th/9402078
http://dx.doi.org/10.1016/S0550-3213(01)00302-9
http://www.arxiv.org/abs/hep-ph/0104016
http://dx.doi.org/10.1103/PhysRevD.72.065011
http://www.arxiv.org/abs/hep-ph/0507130
http://www.arxiv.org/abs/hep-th/0605176

	1. Introduction and results
	2. Zeta function formalism
	2.1. Asymptotics of the Jost function
	2.2. Computing
	2.3. Computing

	3. Comparison with Feynman diagram approach
	4. Conclusions
	Acknowledgments
	References

